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Abstract—The shape of the steady state ice layer that forms on a constant temperature horizontal plate in
a parallel forced convection flow was analyzed. This paper, part I of a two part series, will examine
phenomena that effect the shape of the ice layer in the laminar flow regime. Of particular interest are the
effects of curvature of the ice surface on the free stream flow and of streamwise heat conduction in the ice
layer. A two-dimensional theory developed to account for these effects suggests that a modified Reynolds
number of the form Re,/62? where 0, is a temperature ratio parameter should be used to correlate the ice
profiles. It was found that measurements could be correlated over a wide range of plate temperatures, free
stream temperatures and free stream velocities using this parameter. Also in the laminar regime thermal
instabilities of the boundary layer were observed which produced longitudinal grooves in the ice surface.

NOMENCLATURE

C,C,,C,,C;, constants defined in equations
(5) and (14);
C,.  specific heat;
Gr,  Grashof number based on characteristic
thickness of boundary layer, equation (25);
Nu,. local Nusselt number, hx/1,;
Pr,  Prandtl number;

Re,, Reynolds number, U x/v;
St, Stanton number, equation (14);
1, T,, T,, freezing, plate and free stream

temperatures;

U0, U, free stream velocity far from ice
surface; velocity parallel to ice surface
outside viscous boundary layer;

Vv, complex velocity ;

a, distance between leading edge of ice surface
and leading edge of plate;

g, acceleration due to gravity;

h(s), local heat transfer coefficient;

4,4 9w, 45, heat flux, heat flux in ice, heat flux
in water, heat flux normal to ice surface;

s, distance from leading edge of ice measured
along ice surface;

x', distance from leading edge of ice measured
parallel to plate, x+a;

v, distance normal to plate measured from ice
surface;

x,y, distance parallel to plate measured from its
leading edge and distance normal to plate
from its surface;

w,z,{, complex coordinates, ¢ + iy, x +iy and
E+ins

o ice thickness;

n, &,  parabolic coordinates;

0,8, non-dimensional temperature

(T—T.,)/(T,—T,), cooling temperature
ratio, (T, — T)(T,. —T;);

Aid,, ice and water thermal conductivities;

v, kinematic viscosity ;

0, density;

1—D,2— D, values for one-dimensional and
two-dimensional theories.

INTRODUCTION

ProBLEMS involving the growth or decay of the solid
phase of a substance have generally come to be
called “Stefan-like” problems. These problems occur
in a wide range of practical applications including
the formation of an ice cover, the casting of a metal,
the ablation of a heat shield, and the deposition of a
frost layer on a cold surface to name only a few. One
common characteristic of the Stefan-like problems is
that phase change and an associated source or sink
of latent heat occurs at the moving interface. This
produces a non-linear character in the transient part
of these problems which causes much of the
computational difficulty associated with them. In the
original study of the formation of an ice cover done
by Stefan only conduction heat transfer was involved
f1]. Since then the effects of radiation [2], free
convection [3,4] and forced convection [5-14] have
been studied. In problems where a convective flow
occurs at the phase change interface, besides the
basic non-linearity of the transient problem, two
additional complications arise. First, since the speci-
fic volumes of the solid and the fluid phases are
seldom the same, the phase change at the interface is
equivalent to an effective suction or blowing at the
surface. This effect, which of course alters the heat
transfer coefficient at the phase change surface, has
been examined in a number of different situations
[4,9-14]. The second complication arises because, in
these convective problems, a mutual interaction
occurs among the shape of the phase change
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interface, the flow field next to it, and the heat
transfer from the flow to the interface. Theoretical
studies of the interaction of the flow field and the ice
interface shape have so far been restricted to several
laminar flow problems with relatively simple geo-
metry. These problems include the solidification in a
parallel plate channel [15,16] and in a pipe [17], the
penetration of ice by a water jet [14], and various
problems which combine free convection and solidi-
fication [3, 18,19].

For a constant temperature plate in a semi-infinite
forced convection flow analytical studies have pri-
marily concentrated on examining the non-linear
nature of the transient ice formation problem [5-7].
In these calculations the ice layers formed are
assumed to be thin enough so that stream-wise heat
conduction in the ice and effects of the ice layer on
the flow over the plate can be neglected. Several
approaches have been tried to approximate the
effects that a thick ice layer would have [18,19]. The
result of these analyses will be discussed later in the
paper.

In this paper the phenomena that determine the
steady state shape of the ice layer of a flat, constant
temperature plate in a forced convection flow will be
examined. Since the results will only be concerned
with the final steady state ice layer the transient
aspects of the Stefan’s problem will not enter the
discussions. The phase change characteristic which
will be of most interest in this study is the interaction
of the flow field and the ice layer shape. To
emphasize this effect the measured ice shapes will be
compared with those predicted by a simple one-
dimensional analysis which assumes the ice layer is
very thin and has no effect on the flow field or heat
transfer rate. The ice layer profile that exists in the
laminar regime will be examined in this paper, Part
I. The following paper, Part II, will deal with the
transition to turbulence and the turbulent regime.

EXPERIMENTAL APPARATUS AND PROCEDURE

The present experimental work was carried out in
a closed loop water tunnel having a test section with
dimensions 254cm (width) x 45.7cm  (height) x
213.4cm (length). The temperature of the water
in the tunnel could be controlled by means of
a refrigeration and heat exchanger system at any
value between room temperature and 0°C. A copper
plate 6.35mm thick, 24.1cm wide and 152cm long
was installed horizontally in the test section with its
cold surface facing upward. This plate was used for
the purpose of ice growth, with its temperature being
maintained isothermal and uniform by circulating a
coolant fluid from a temperature controlled bath at a
high velocity under the plate. Thus, the plate
temperature could be controlled at any point
between 0 to — 19°C, independent of the free stream
temperature. Consequently, it was possible to grow
ice on the plate under uniform temperature and
velocity conditions of the free stream flow, at various
sets of experimental conditions. Figures showing the
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overall construction of this facility were presented in
[22]. Figure 1 of this paper shows a detail of the
configuration of main flow, coolant flow and ice
formation near the leading edge of the plate. It will
be noted that the ice is shown growing in front of the
leading edge of the plate. This was predicted by the
theory and observed experimentally. In the experim-
ental configuration used the suction under the plate
could be adjusted so that the flow approaching the
leading edge of the plate was parallel to it. Also as an
ice build-up occurred on the plate the suction could
be adjusted to maintain the stagnation point of the
flow at the leading edge of the ice profile.
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FIG. 1. Schematic representation of the ice layer profile, the
coolant flow and the main flow in the vicinity of the leading
edge of the cooling plate.
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In order to measure velocity profiles above the ice,
a laser Doppler anemometer with a helium-neon gas
laser (15mW output) in the forward scatter mode
was used. Frequency shifting was employed on one
of the beams to improve the doppler signals. The
laser optics were mounted on a three-dimensional
traversing rig driven by stepping motors and
controlled by a programable calculator. With this
system velocity profiles could be measured at various
distances from the leading edge of the plate. The
laser traversing rig was also used to measure the
position of the ice surface. This was done by moving
the traversing head so that the laser beam coincided
with the ice-water interface at various positions
along the ice profile. The coordinates of these points
when compared to coordinates of a reference line on
the test section window could then be used to give
the ice thickness profile. The laser doppler signal was
also analyzed to give an indication of the free stream
turbulence level.

Vertical temperature profiles in the boundary
layer were taken using a Stum dia copper—
constantan thermocouple formed in the shape of
a loop which could also be traversed through
the boundary layer. All data were taken after a
thermally steady state was confirmed.

The ranges of conditions employed were:

free stream velocity U, = 4.3 ~ 15cm/s
free stream temperature T, = 1.3 ~ 5.0°C
plate temperature 7,, = —2.3 ~ —12.4°C.



The steady state ice layer profile—I.

Consequently the range of parameters covered by
these test conditions were Re, = 2 x 10* ~ 10° and
the cooling temperature ratio 6, = 1.6 ~ 9.5.

THEORETICAL PREDICTION OF THE STEADY STATE

ICE LAYER ON A CONSTANT TEMPERATURE PLATE

The problem to be considered is that of freezing of
water on a cold surface in a steady plane flow as
shown in Fig. 1. The local thickness of the ice layer is
d; and its thermal conductivity is A,. The temperature
of the cold surface is 7, which is below the freezing
temperature, 7.

(a) Simple one-dimensional theory

First a simple one-dimensional analysis will be
presented in which the thickness of the ice layer is
assumed to be small. In this limit there is a negligible
difference between x and x/, that is a =0, and the
temperature profile through the ice can be assumed
to be linear. The conductive heat flux, g,, through the
ice is then

Also if 4, is small the heat-transfer coefficient, h(s), to
the ice surface can be assumed to be unaffected by
the shape of the ice surface. The convective heat flux,
4., transferred from the water to the ice interface is
then given by

gy = h(Too - Tf)

where 4 is the heat-transfer coefficient on a flat plate

with no ice layer and T, is the free stream

temperature. The heat balance equation at the ice

interface is:

-1 (1)
é

i

Wy~ Tp) =4

or in terms of a local Nusselt number equation (1)
can be written
X A, T,—T;

—=— —— Nu,. 2)
6 4 T,—T,
Equation (2) could be used to predict the ice
thickness if the Nusselt number is known or
alternatively the local Nusselt number could be
calculated using measured values of the ice thickness.

For a laminar boundary-layer flow on a flat plate,
the local Nusselt number is given by [ 23]

Nu, = 0.332Pr'PRel, 3

i

Using this expression in equation (2) gives

X M 0330Pr R p, @)
o A
where f, is the cooling temperature ratio,
{T,— T,)(T, —T;). The reciprocal of this ratio, 1/6,,
is sometimes referred to as the superheat ratio. The
prediction in equation (4) is applicable only if the ice
layer has grown to its steady state profile, the flow is
laminar and unaffected by the shape of the ice layer
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and if streamwise heat conduction in the ice layer is
negligible. The result in equation (4) will be
compared to the result of a two-dimensional analysis
to follow where some of the above restrictions have
been relaxed.

(b) Two-dimensional theory
The effects of two of the approximations used in
deriving equation (4), the effects of the shape of the
ice layer on free stream flow and the effect of
streamwise heat conduction in the ice, will now be
analyzed using a two-dimensional model of the ice
layer and the flow around it. Rearranging equation
(4) gives
8t =Cx (%)

A; 0. 2y

C =i paved -

(Aw 0.332Pr‘-’3> U,
That is the shape of the ice surface is, at least for
small ice thicknesses, a parabola. This observation
suggests a basis for an analytic solution of the two
dimensional problem. It will be assumed that in the
case of large ice thicknesses the shape of the ice layer
is still approximately parabolic. The solutions for the
heat conduction in the ice and the free stream flow
can then be readily obtained using a transformation
to parabolic coordinates. The definition of symbols
for the two-dimensional problem are shown in Fig. 2.

where
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FiG. 2. Coordinate system for solving the heat-conduction
equation in the ice and the potential flow equation exterior
to the ice.

It will be noted that for this problem the ice surface
is assumed to be a parabola with its vertex displaced
a distance g, in front of the leading edge of the plate.
This distance a, will be calculated and used in the
solution.

First the heat-conduction problem in the ice will
be solved. Applying the complex transformation

z=—al?
where ] (6)
z=x+iyand { = &+in

transforms the parabolic ice layer into a plane slab.
The original and transformed coordinates are related
by

x=—a(g-n? M
and y = —2aén.
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On the cooling plate, ¢=0, #=0 where
8= (T~T,) (T;~T,). On the ice-water interface,
=1, 8=1. Also on ¢ =1 which defines 3, =y,
equation (7) gives 67 = 4af{a+x).

It will generally be more convenient to use an x'
coordinate x" = a+x, defined from the leading edge
of the ice so that

8% = dax'. {8}

In the transformed coordinates the solution for the
temperature field, V20 = 0, is just

f = ¢ 9)

Transformed back to x, y coordinates this gives

—x A (x24I 12

10
> {10)

For this problem the heat flux at the ice-water
interface is of more interest than the temperature
field itself.

The complex heat flux is
) de
q= qx+lqy = _)“i(Tf" Tw) Zi:

Its magnitude, jg| = (g9)"/%, at the surface £ = 1 is

= (T =T) s———=75"
qs ( ! )2(1(1 +]’]2)1"'
Using equation (7) and (8) to express this in terms of
d; and X’ gives the desired result

(T,~T.) !

J; 1+ (5:'/2'\”)2)”2 .
As would be expected when d,/x" « 1 equation (11)
approaches the one-dimensional result.

To solve for the heat-transfer coefficient exterior to
the ice layer the potential flow over the ice surface

(11)

s = — 4

0.073v2pCpU L3
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must first be obtained. In the transformed coor-
dinates used above the flow of a uniform stream over
the parabolic ice surface becomes a stagnation flow
impinging normally on a flat surface. The complex
potential for such a flow is given by

wl) = ¢ +iy = U, 0a((*—20)
=Uyoa{[&*—n*—28]+2C— Uiy} (12)
where U_, is the uniform stream velocity far from
the ice surface [24]. From equation (12) it can be
seen that &=1 is a streamline with ¥ =0. The
required result is the magnitude of the velocity U,
along this streamline. The complex velocity,

V = dw/dz, is
o 1=]
V=Ug|—)
5

The magnitude of the velocity, V| = (VV)Y2, on
£ = 1is then

1
=V s
o e (1‘5'7;’2)1’(2

For a boundary layer growing with varying free
stream velocity an approximate means of calculating
the heat-transfer coefficient has been developed using
the wedge solutions. This procedure is described in,
for example, Kays [25]. The result is that the
Stanton number, St, is given by

U (13)

(14)

For Pr = 10 values of the constants are given as
C, = 0073, C, = 0.685, and C; = 2.37. The velocity
in equation {13) can be substituted into equation
(14) and the integration carried out to give the heat-
transfer coefficient as a function of position along the
ice surface. In carrying out the integration it will be
more convenient to convert the integral into an
integral over y rather than s. For this purpose
ds/dn = 2a(l +%%)"/? may be used. The result is that

1.685

n

h{(s)

= (2a)1/2(1+’12)0.8425 [J‘n

: - (15)
n 2.37 dl’}

0.5
o (1_*_};;2)0.68-5—}

The heat-transfer coefficient can be expressed as a function of §; andx' noting that a = 82/(4x’) and = 2x'/8,.
A heat balance at the ice surface can now be used to relate g, and h(s)

where

—q,ds = h(s)(T,, — Ty} ds. (16)
Inserting equation {(11) and (15) in equation (16) and rearranging the result gives
X 4,0730 /U _ox'\*3 /x
— e T+ f1— (17
o A 9, 01/,
(2)(')1‘685
‘ —1 (18)

<
f((s—)'_‘ /A» Iy \2 103425 2575, ,?:2.37* 0.5
! 20 14+ — PR ¢ )
v [ *”(aH H (T2 )oees "]

{



The steady state ice layer profile—I.

Near the leading edge of the plate where x'/§; « 1

X’ N 3.37\1/2 ]
f(s:>~<7) '

= 0.2981.

(19)

Equation (17) then predicts that the ice has a
parabolic shape given by

by

. /1w
T = 0.948 Y Re%5/0,. (20)
B A

i i
From this expression the distance a, that the ice
forms in front of the plate can be obtained
5

T ax

Ao N
—0278( 2% 0, ,
lw UocO

Alternatively for x = X', f(x'/3;) = 0 and equation
(17) gives

a

2n

2 A
_ 0730 X R0,

i i

(22)

Except for a slight difference in the constant 0.730
this is the same as the one-dimensional result in
equation (4). Referring back to equation (13) it can
be seen that for large distances, #, from the
stagnation point the stagnation flows gives a con-
stant free stream velocity U, which is the same
condition as that for parallel flow over a flat plate.

If the result of equation (22) is defined as
(x/6,)]; _ p equation (17) can be rewritten as

N 23)
6i 1—D<;> [ +j<;l>] (

where (x/0,)|,_p 1s the result including the two-
dimensional effect. The function f(x'/8;) was ob-
tained by numerically integrating equation (18). The
result is shown in Fig. 3. Since f(x'/§;) is only a small
correction factor in equation (23) it was found that
its effect could satisfactorily be approximated by
substituting (x/8;)|, - for x'/d; in the function. The
difference between x and x’ will still enter into the
first order term (x/x")°-5. Here the ratio x/x’ can also

X X

2-D Oi

FiG. 3. The function, f(x'/8;), in the two dimensional
theory solved for by numerical integration.
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FiG. 4. A comparison of the ice thicknesses predicted by
the two-dimensional and one-dimensional theories.

be related to (x/d,)|; —p by using equation (21). With
these substitutions equation (23) becomes

G

)

20 0 1“’[1+0,148<ﬁ )} "
Xli-p

The result (x/6;)|;_p is then given as an explicit
function of (x/d,)|, - or alternatively using equation
(4) or (22) it can be seen that (x/d,)|, - p is an explicit
function- of Re,/62. The ratio &,_p/d,,_p derived
from equation (24) is plotted as a function of Re,/0?
in Fig. 4. For values of Re,/0? less than about nine
the two-dimensional theory predicts a larger ice
thickness than the one-dimensional result. This
occurs because the two-dimensional theory accounts
for the fact that the ice grows in front of the leading
edge of the pldte so that the ice thickness does not go
to zero at x =0 as the one-dimensional theory
would predict. For Re /62 greater than nine the two-
dimensional theory predicts an ice layer a few
percent thinner than the one-dimensional theory.
This thinning of the ice layer is due to the combined
effects of streamwise heat conduction in the ice layer
and the acceleration of the free stream velocity over
the ice surface. These predictions will be compared
with experimental results in the next section.

As mentioned in the Introduction several previous
attempts have been made to approximate the effects
of streamwise heat conduction and free stream
acceleration. Saito et al. [20] used a heat-transfer
correlation for a blunt body of arbitrary shape and a
distributed source model for approximating the flow
and heat transfer to the ice surface on a plate. In this
analysis the possibility that the ice could form in
front of the leading edge of the plate was neglected.
Introducing this approximation, x = x', into equa-
tion (20) gives a result within 19 of the result in [20]
for the shape of the ice surface near the leading edge
of the ice sheet. The heat-transfer correlation used in
[20] does not approach the flat plate correlation for
large values of x so that the resulting expression may
be expected to apply only near the leading edge.

The results of the other attempt to analyze the
efect of a thick ice sheet [21], appeared to have
some basic inconsistencies in it; however, that result
could not be put in a form which could be checked
against the present results.

X

o

(24)
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RESULTS

Measured ice profile thicknesses for several dif-
ferent temperature and velocity conditions are shown
in Fig. 5. The ice thicknesses shown, up to 10cm,
were typical of those within the accessible range of
experimental parameters. The figure also shows that
for the thicker ice layers the ice does in fact extend in
front of the leading edge of the plate as was predicted
by the two-dimensional theory. In this figure the two
independent effects of velocity and temperature are
shown. The theory of the previous section suggests,

Upem/s  To°C 6,

8r 0130~154 13 85
® 55~ 67 35 30
B a 55~ 87 50 1.6

&; (cm)

x (cm)

FiG. 5. Measured ice layer profiles for several conditions of
free stream velocity and temperature ratio.

however, that these effects can be combined in the
single parameter Re /02. This will be done later but
first the velocity and temperature profiles over the
ice will be examined.

Figures 6 and 7 show respectively the dimension-
less velocity and temperature profiles above the ice
surface for various values of Re,/02. It should also be
noted that for both of these profiles the scanning
apparatus was restricted to operation in the vertical
plane and thus the distance )’, in the figures is a
vertical distance from the ice surface and not a
distance normal to the ice as might have been
preferred. In the figures this distance has been
normalized by the characteristic laminar boundary-
layer thickness, (vx/U )%, so that for a boundary
layer developing on a flat plate all the profiles should
fall on a single curve marked “laminar theory for flat
plate”. Comparison of the measured profiles with the
flat plate profiles; therefore, shows the effects of the
ice surface.

In Fig. 6 it should be noted that the viscous
boundary layer is confined to values of the dimen-

15 Re, /6
= 464
o 185
® 464
o 928
41260

Laminar Theory for Flat Plate

0 1 1 1 1 H 1 1 1 i 1 | 1
o 20 40 60 80 100 120
U\ 72
2}
(5]
VX

F1G. 6. Measured velocity profiles near the ice surface with
U,o=126cm/s, T, = 1.32°C and 0, = 8.86.

Re, /8’

0 185
® 46.4
o 92.7
AB36

Laminar Theory for Flat Plate

L

U k]
vy

F1G. 7. Measured temperature profiles near the ice surface
with U, = 12.6cm/s, T, = 1.32°C and 6, = 8.86.

This again is a result of the flow acceleration. The
profile at Re, /02 = 92.8 suggests that the velocity at
this maximum is actually slightly larger than the free
stream value far from the ice. This may in fact be an
experimental artifact. For very large values of Re,/0?
the profile does, however, approach that for a flat
plate.

The anticipated effect of the free stream accele-
ration on the temperature profile is to increase the
temperature gradient at the ice surface. Such an
increase is observed in Fig. 7; however, it must be
remembered that to obtain the actual temperature
gradient normal to the ice surface a correction must
first be made for the local slope of the ice profile.

In Fig. 8 the measured ice profiles are compared
with the one- and two-dimensional theories of the
previous section. In this figure the results have been

—

sionless y distances of about 5 or less. Outside this

appropriate to use in the boundary-layer calculation
is the value just outside the rapid drop in velocity at
the ice surface. The profiles taken near the leading
edge, Re,/0? = 4.64 and 18.5 show that this value of
U, is increasing rapidly with Re /6?2 as the velocity
accelerates from the stagnation point on the ice. For
Re,/02 = 46.4 and 92.8 the velocity profiles exhibit a
maximum just outside the viscous boundary layer.

show the same general behavior as the two-
dimensional theory predicts. That is, for small Re /02
the value of x/§; is less than the one-dimensional
prediction. For intermediate values of Re.0? the
results are above the one-dimensional prediction and
for larger values of Re,/0? the measurements again
approach the one-dimensional values. Throughout
most of the experimental range the measured values

A
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Ugpem/s T 6

® 43~ 58 50 22
A 48~ 66 35 3.0
©130 160 14 8.6
o83+ 68 34 28
o 98~120 35

4130~ 154 .
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T 1T Ty

—«==-1-DTheory, Eq. 4
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F1G. 8. A comparison of predicted and measured ice layer
profiles on a constant temperature plate.

of x/8; are, however, 10-20%, higher, that is, the ice
thickness is less than that predicted by the two-
dimensional theory.

Several factors could contribute to this discrep-
ancy. As can be seen from Fig. 1 the cooling channels
in the constant temperature plate could not be
extended right to the leading edge of the plate.
Approximately 2cm of the leading edge is cooled
only by conduction in the copper plate. Measure-
ments made by touching a fine thermocouple to the
plate surface indicated that the plate was at a
constant temperature within the accuracy of the
measurement technique for most of its length.
However, if the effective leading edge of the constant
temperature plate is as much as a few millimeters
downstream from the physical edge of the plate the
data in Fig. 8 would be shifted downward signi-
ficantly. Another factor that should be mentioned is
that the water tunnel used had a fairly high free
stream turbulence level. The RMS fluctuation in U,
was about 1%. This may have contributed to an
increased heat-transfer rate to the ice over that which
would be predicted for an ideally laminar flow.
Kestin [26] has found that free stream turbulence
levels have a large effect on laminar heat-transfer
rates in regions of accelerating flow but have no
effect in regions of zero pressure gradient flow. This
would explain the increased heat-transfer rates
observed over the initial part of the ice layer in these
experiments. The increase in heat-transfer rate
observed by Kestin near the stagnation point of a
cylinder in cross flow was 30-409; for Tu = 0.8%.
This magnitude of change in heat-transfer rate is
compatible with the measurements on the ice surface.

For the present experimental arrangement of an
upward facing ice surface the water between the
freezing point, 0°C, at the ice surface and the
maximum density point at 4°C has an unstable
density gradient. That is, the density in the boundary
layer is increasing with height above the ice.
Previous studies of the laminar boundary-layer flow
on a flat plate with no ice have shown that for a
sufficiently thick boundary layer the thermal in-
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stability generates secondary flows in the boundary
layer [22,27]. These secondary flows take the form
of vortices with their axis aligned parallel with the
flow direction (longitudinal vortices). The condition
for the onset of these vortices in a laminar boundary
layer on an ice surface will depend on the free stream
temperature, T,. The most unstable situation exists
when T, =4°C in which case the onset of the
vortices would occur when a parameter Gr x 200
[27]. The parameter Gr is a Grashof number based
on the characteristic thickness of the boundary layer
and for T,, = 4°C it is given by
3

49
Gr=2:54x107* 5 s

(25)

For small free stream velocities and large distances
along the ice surface the value of Gr may exceed the
critical value for the onset of vortices before the
Reynolds number exceeds the critical value for onset
of turbulence. For example, with U_ = 4.0cm/s,
T, = 4°C and at x = 100cm the Reynolds number is
23x10* and Gr=220. Under these conditions
longitudinal vortices in a laminar boundary layer
would be expected. Figure 9 shows the effect of these
vortices on the ice surface at the conditions defined
above. The effect of the vortices is to produce
longitudinal grooves in the ice surface. For the
conditions that were obtainable in this experiment
the secondary circulation in the vortices is weak and
the depth of the grooves in the ice was too small to
be measured directly. They were; however, readily
discernible by observing the light reflected from the
ice surface. Figure 9 shows the reflection of the laser
beam light, upper straight line, from the ice surface,
lower waving line. For the length of plate in the
present experiment these longitudinal vortices did
not develop to a sufficient intensity that they had a
measurable effect on the overall ice thickness. It may
be, however, that for low velocity flows over a very
long ice surface that their effect on the overall heat
transfer rate would have to be taken into account.

CONCLUSIONS

An analysis of the ice growth on a constant
temperature plate in forced convection showed that
the two-dimensional effects of streamwise heat
conduction in the ice and of free stream acceleration
over the ice could be modelled by approximating the
ice layer as a parabolic cylinder. This analysis
showed that the relevant parameter for determining
when these effects are important is a modified
Reynolds number of the form Re /02 where 0, is a
temperature ratio parameter. The calculations show
that streamwise heat conduction and flow accele-
ration are significant for Re,/0? less than about 50.
However, due in part to a partial cancellation of the
various two-dimensional effects a large difference
between the one-dimensional approximation and the
two-dimensional analysis occurs only when Re, /6?2 is
less than about 6. The experimental measurements of
the ice thickness generally confirmed this theoretical
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Reflected Beam on the lce Surface

Original Laser Beam

F1G. 9. Photograph showing longitudinal grooves in the ice surface caused by longitudinal vortices with
U,o=40cm/s, T,, =4°Cand 6, = 0.6 at x = 100cm.

prediction although there was a 10-20%, discrepancy
near the plate leading edge. The overall conclusion of
the measurements and the calculation is, however,
the same. That conclusion 1is that the one-
dimensional approximation will probably be suf-
ficiently accurate for most practical purposes. One
significant prediction of the two-dimensional analysis
which is not given by the one-dimensional approxi-
mation is that the steady state ice layer actually
extends upstream of the leading edge of the cooling
plate. This prediction was confirmed in the experi-
mental observations.

One other interesting phenomenon that was
observed in the experiments was a thermal instability
of the boundary layer. For small velocities and at
large distances along the plate this thermal in-
stability was observed to produce longitudinal
grooves in the ice surface. This phenomenon may be
of interest in explaining some surface features of
glaciers where surface run-off is present. It should be
noted, however, that it will occur only for low
velocity flows and only in the case where the flow is
over an ice surface.
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PROFIL PERMANENT DE LA COUCHE DE GLACE SUR UNE PLAQUE A TEMPERATURE
CONSTANTE, EN CONVECTION FORCEE: tére Partie—REGIME LAMINAIRE

Résumé—On étudie la forme de la couche de glace qui apparait en régime permanent sur une plaque
horizontale 4 température constante, dans un écoulement paralléle forcé. Dans cette premiére partie, on
examine les phénomenes qui affectent la forme pour le régime laminaire. Les effets de courbure de la
surface de la glace et de la conduction thermique longitudinale dans la couche de glace sont
particuliérerent intéressants. Un modéle bidimensionne] développé pour tenir compte d’eux, suggére
Putilisation d’un nombre de Reynolds modifié Re, /87 ot 8, est un paramétre de température. On trouve
que les mesures peuvent étre unifiées par ce paramétre, pour un large domaine de température de plaque,
de température d'écoulement libre et de vitesse d’écoulement. Dans le régime laminaire, des instabilités
thermiques de la couche limite sont observées, lesquelles produisent des rainures longitudinales sur la
surface de la glace.

DAS PROFIL DER STATIONAREN EISSCHICHT AUF EINER PLATTE KONSTANTER
TEMPERATUR BEI ERZWUNGENER STROMUNG 1. BEREICH DER LAMINAREN
STROMUNG

Zusammenfassung—Die Form einer stationdren Eisschicht, die sich aul einer horizontalen Platte
konstanter Temperatur bei paralleler erzwungener Stromung bildet, wurde analysiert. Diese Arbeit, Teil I
einer zweiteiligen Folge, wird die Phdnomene, welche die Form der Eisschicht im Bereich der laminaren
Stromung beeinflussen, untersuchen. Von besonderem Interesse sind die Einfliisse der Kriimmung der
Eisoberfliche auf die freie Stromung und die der Wirmeleitung der Eisschicht in Strémungsrichtung.
Eine zweidimensionale Theorie, in der diese Einfliisse beriicksichtigt werden, legt es nahe, eine
modifizierte Reynolds-Zahl der Form Re,/6, zur Darstellung der Eisprofile zu verwenden, wobei 8, ein
Temperaturverhiltnisparameter ist. Es wurde gefunden, daB bei Verwendung dieses Parameters die
Messungen in einem weiten Bereich von Plattentemperaturen sowie Temperaturen und Geschwindig-
keiten der freien Stromung gut korreliert werden konnten. Auch im laminaren Bereich wurden thermische
Instabilitdten der Grenzschicht beobachtet, die Langsrillen in der Fisoberfliche hervorriefen.

CTAU.MOHAPHHI?E MPOC®HIb CJIOA J1bJAA HA OBTEKAEMOM MJACTHHE
NMOCTOAHHOW TEMITEPATYPbL. YACTh 1. IAMUHAPHBIN PEXUM

AHHOYAUMA — AHATHIMPYETCH KOHOUIYpallus CTALMOHAPHOrO CAOA .Ibid. OOPA3YIONIErocs HA TOPH-
3OHTABHON MIACTHHE, HAXOISIWENHCS B napajuiesbHOM oToke. B 1aHHOI cTaThe, mpeacTaBnsiolen
co6oli NepayIo HacTh PabOThHI, HCCNEAYIOTCH SBJICHAS, OK43BIBAIOLLME BIMAHKE HA KOH(DHIYPALLUIO CIION
fbJa NpY NAMHHAPHOM pexume TedeHus. (Ocoboe BHHMaHME OODAIIEHO H4 BJMAHME KPHBH3HBI
N10BEPXHOCTH /1bJa HA CBOBOIRLIM NOTOK M TENIONPOBOIHOCTL CAOS /b4 B HANPABICHHH TEUCHHA.
Ans yu€ra >1ux ddexTon paspaboTana AByMepHAS MOMEIbL. B KOTOPOH 1is obobwenns npoduseil

CNOs JIbjla UCTIONB3YETCA MOARGHUNpOBanHOe yHcno PeliHoasaca suaa Re /02

. rae .- napamerp

OTHOUICHHS TemnepaTyp. Halaeno. 4To ¢ NOMOWBIO NAHHOTO NMAPAaMETPa PE3YALTATH HIMEpPEHMit

MOXHO 00OOWHTL AAS IUHPOKOFO AMANAIOHA TEMIEPATYP MJIACTHHBL TEMMEPATYD M CKOpOCTei

cB060aHOro notoka. CenyeT OTMETHTH, 4TO 1IPH JIAMHHAPHOM peXHMe TeHeHus Hab.1io1alinch

TEPMHYECKHE HEYCTOHYUBOCTH NOTPAHHYHOTO COS. KOTOPBIE MPUBOMMIK K 06PA30BAHUIO 11POAOABHBIX
KAHABOK HA HOBEPXHOCTH JIbjA.



