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Abstract-The shape of the steady state ice layer that forms on a constant temperature horizontal plate in 
a parallel forced convection flow was analyzed. This paper, part I of a two part series, will examine 
phenomena that effect the shape of the ice layer in the laminar flow regime. Of particular interest are the 
effects of curvature of the ice surface on the free stream flow and of streamwise heat conduction in the ice 
layer. A two-dimensional theory developed to account for these effects suggests that a modified Reynolds 
number of the form Re,/8: where 8, is a temperature ratio parameter should be used to correlate the ice 
profiles. It was found that measurements could be correlated over a wide range of plate temperatures, free 
stream temperatures and free stream velocities using this parameter. Also in the laminar regime thermal 
instabilities of the boundary layer were observed which produced longitudinal grooves in the ice surface. 

NOMENCLATURE 

C, C,, C,, C,, constants defined in equations 
(5) and (14); 

C,, specific heat ; 
Gr, Grashof number based on characteristic 

thickness of boundary layer, equation (25); 

NU,. local Nusselt number, hx/A, ; 
I+, Prandtl number; 

Re,, Reynolds number, U,x/v; 

St, Stanton number, equation (14); 
TJ, T,, T,, freezing, plate and free stream 

temperatures ; 
u mO, U,, free stream velocity far from ice 

surface ; velocity parallel to ice surface 
outside viscous boundary layer; 

V, complex velocity; 

a, distance between leading edge of ice surface 
and leading edge of plate; 

93 acceleration due to gravity; 
h(s), local heat transfer coefficient ; 

q, qi, qw, q., heat flux, heat flux in ice, heat flux 
in water, heat flux normal to ice surface; 
distance from leading edge of ice measured 
along ice surface ; 
distance from leading edge of ice measured 
parallel to plate, x + a ; 
distance normal to plate measured from ice 
surface ; 
distance parallel to plate measured from its 
leading edge and distance normal to plate 
from its surface ; 
complex coordinates, 4 + it,h, x + iy and 

5+iV; 
ice thickness ; 
parabolic coordinates; 
non-dimensional temperature 
(T- T,)/( T, - T,), cooling temperature 
ratio, (T, - T,)/( T, - Tf) ; 

3.,1,, ice and water thermal conductivities; 

V, kinematic viscosity ; 

Pa density ; 
1 -D, 2 - D, values for one-dimensional and 

two-dimensional theories. 

INTRODUCTION 

PROBLEMS involving the growth or decay of the solid 
phase of a substance have generally come to be 
called “Stefan-like” problems. These problems occur 
in a wide range of practical applications including 
the formation of an ice cover, the casting of a metal, 
the ablation of a heat shield, and the deposition of a 
frost layer on a cold surface to name only a few. One 
common characteristic of the Stefan-like problems is 
that phase change and an associated source or sink 
of latent heat occurs at the moving interface. This 
produces a non-linear character in the transient part 
of these problems which causes much of the 
computational difficulty associated with them. In the 
original study of the formation of an ice cover done 
by Stefan only conduction heat transfer was involved 
[l]. Since then the effects of radiation [2], free 
convection [3,4] and forced convection [5-141 have 
been studied. In problems where a convective flow 
occurs at the phase change interface, besides the 
basic non-linearity of the transient problem, two 
additional complications arise. First, since the speci- 

fic volumes of the solid and the fluid phases are 
seldom the same, the phase change at the interface is 
equivalent to an effective suction or blowing at the 

surface. This effect, which of course alters the heat 
transfer coefficient at the phase change surface, has 
been examined in a number of different situations 
[4,9914]. The second complication arises because, in 
these convective problems, a mutual interaction 
occurs among the shape of the phase change 
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interface, the flow field next to it, and the heat 

transfer from the flow to the interface. Theoretical 
studies of the interaction of the flow field and the ice 
interface shape have so far been restricted to several 
laminar flow problems with relatively simple geo- 
metry. These problems include the solidification in a 
parallel plate channel [ 15,161 and in a pipe [ 171, the 
penetration of ice by a water jet [14], and various 
problems which combine free convection and solidi- 
fication [3,18,19]. 

For a constant temperature plate in a semi-infinite 
forced convection flow analytical studies have pri- 

marily concentrated on examining the non-linear 
nature of the transient ice formation problem [S-7]. 
In these calculations the ice layers formed are 
assumed to be thin enough so that stream-wise heat 
conduction in the ice and effects of the ice layer on 
the flow over the plate can be neglected. Several 
approaches have been tried to approximate the 

effects that a thick ice layer would have [18,19]. The 
result of these analyses will be discussed later in the 
paper. 

In this paper the phenomena that determine the 
steady state shape of the ice layer of a flat, constant 
temperature plate in a forced convection flow will be 
examined. Since the results will only be concerned 
with the final steady state ice layer the transient 
aspects of the Stefan’s problem will not enter the 
discussions. The phase change characteristic which 
will be of most interest in this study is the interaction 
of the flow field and the ice layer shape. To 
emphasize this effect the measured ice shapes will be 
compared with those predicted by a simple one- 
dimensional analysis which assumes the ice layer is 
very thin and has no effect on the flow field or heat 
transfer rate. The ice layer profile that exists in the 
laminar regime will be examined in this paper, Part 
I. The following paper, Part II, will deal with the 
transition to turbulence and the turbulent regime. 

EXPERIMENTAL APPARATUS AND PROCEDURE 

The present experimental work was carried out in 
a cIosed loop water tunnel having a test section with 
dimensions 25.4 cm (width) x 45.7 cm (height) x 
213.4cm (length). The temperature of the water 
in the tunnel could be controlled by means of 
a refrigeration and heat exchanger system at any 
value between room temperature and 0°C. A copper 
plate 6.35mm thick, 24.1 cm wide and 152cm long 
was installed horizontally in the test section with its 
cold surface facing upward. This plate was used for 
the purpose of ice growth, with its temperature being 
maintained isothermal and uniform by circulating a 
coolant fluid from a temperature controlled bath at a 
high velocity under the plate. Thus, the plate 
temperature could be controlled at any point 
between 0 to - 19”C, independent of the free stream 
temperature. Consequently, it was possible to grow 
ice on the plate under uniform temperature and 
velocity conditions of the free stream flow, at various 
sets of experimental conditions. Figures showing the 

overall construction of this facility were presented in 
[22]. Figure 1 of this paper shows a detail of the 
configuration of main flow, coolant flow and ice 
formation near the leading edge of the plate. It will 
be noted that the ice is shown growing in front of the 
leading edge of the plate. This was predicted by the 
theory and observed experimentally. In the experim- 
ental configuration used the suction under the plate 
could be adjusted so that the flow approaching the 
leading edge of the plate was parallel to it. Also as an 
ice build-up occurred on the plate the suction could 
be adjusted to maintain the stagnation point of the 
flow at the leading edge of the ice profile. 

“mo, TUJ ) Tf - r Soundaly Layer 

- / 
__-- -- 
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Test Section Bottom 

FIG. 1. Schematic representation of the ice layer profile, the 
coolant flow and the main flow in the vicinity of the leading 

edge of the cooling plate. 

In order to measure velocity profiles above the ice, 
a laser Doppler anemometer with a helium-neon gas 

laser (15mW output) in the forward scatter mode 
was used. Frequency shifting was employed on one 
of the beams to improve the doppler signals. The 
laser optics were mounted on a three-dimensional 
traversing rig driven by stepping motors and 
controlled by a programable calculator. With this 
system velocity profiles could be measured at various 
distances from the leading edge of the plate. The 
laser traversing rig was also used to measure the 
position of the ice surface. This was done by moving 
the traversing head so that the laser beam coincided 
with the ice-water interface at various positions 
along the ice profile. The coordinates of these points 

when compared to coordinates of a reference line on 
the test section window could then be used to give 
the ice thickness profile. The laser doppler signal was 
also analyzed to give an indication of the free stream 
turbulence level. 

Vertical temperature profiles in the boundary 
layer were taken using a 51 pm dia copper- 
constantan thermocouple formed in the shape of 
a loop which could also be traversed through 
the boundary layer. All data were taken after a 
thermally steady state was confirmed. 

The ranges of conditions employed were: 

free stream velocity U cL = 4.3 - 15 cm/s 
free stream temperature T, = 1.3 - 5.O’C 
plate temperature T, = - 2.3 - - 12.4”C. 
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Consequently the range of parameters covered by 
these test conditions were Re, = 2 x 10’ N IO5 and 
the cooling temperature ratio 0, = 1.6 N 9.5. 

THEORETICAL PREDICTION OF THE STEADY STATE 
ICE LAYER ON A CONSTANT TE‘~PERATURE PLATE 

The problem to be considered is that of freezing of 
water on a cold surface in a steady plane flow as 
shown in Fig. 1. The local thickness of the ice layer is 
ai and its thermal conductivity is 3Li. The temperature 
of the cold surface is T,,,, which is below the freezing 
temperature, r, 

(a) Simple one-dimensional theory 
First a simple one-dimensional analysis will be 

presented in which the thickness of the ice layer is 
assumed to be small. In this limit there is a negligible 
difference between x and x‘, that is a = 0, and the 
temperature profile through the ice can be assumed 
to be linear. The conductive heat flux, qi, through the 
ice is then 

Also if Lii is small the heat-transfer coefficient, h(s), to 
the ice surface can be assumed to be unaffected by 
the shape of the ice surface. The convective heat flux, 
qw, transferred from the water to the ice interface is 
then given by 

where h is the heat-transfer coelhcient on a flat plate 
with no ice layer and T, is the free stream 
temperature. The heat balance equation at the ice 
interface is: 

5-G 
h(Tm - Tf) = Ai .-- 

t 
(1) 

or in terms of a local Nusselt number equation (1) 
can be written 

X I, T,-Tf 

z 
= - - Nu,. 

li T,- T, 
(2) 

Equation (2) could be used to predict the ice 
thickness if the Nusselt number is known or 
alternatively the local Nusselt number could be 
calculated using measured values of the ice thickness. 

For a laminar boundary-layer flow on a flat plate, 
the local Nusselt number is given by [23] 

Nu X = 0.332Pr113~e1i2 x ’ 

Using this expression in equation (2) gives 

(3) 

x a. 
- w 0.332Pr”3Re~/2/0, 

&- lj 
(4) 

where 8, is the cooling temperature ratio, 
(T,- T,)/(T, - TJ). The reciprocal of this ratio, l/e,, 
is sometimes referred to as the superheat ratio. The 
prediction in equation (4) is applicable only if the ice 
layer has grown to its steady state profile, the flow is 
laminar and unaffected by the shape of the ice layer 

and if streamwise heat conduction in the ice layer is 
negligible. The result in equation (4) will be 
compared to the result of a two-dimensional analysis 
to follow where some of the above restrictions have 
been relaxed. 

(b) T~o-di~en.~~o~a~ theory 
The effects of two of the approximations used in 

deriving equation (4) the effects of the shape of the 
ice layer on free stream flow and the effect of 
streamwise heat conduction in the ice, will now be 
analyzed using a two-dimensional model of the ice 
layer and the flow around it. Rearranging equation 
(4) gives 

where 
s: = Cx (5) 

C=($&iZ!‘~ 
That is the shape of the ice surface is, at least for 
small ice thicknesses, a parabola. This observation 
suggests a basis for an analytic solution of the two 
dimensional problem. It will be assumed that in the 
case of large ice thicknesses the shape of the ice layer 
is still approximately parabolic. The solutions for the 
heat conduction in the ice and the free stream flow 
can then be readily obtained using a transformation 
to parabolic coordinates. The definition of symbols 
for the two-dimensional problem are shown in Fig. 2. 

Fro 2. Coordinate system for solving the heat-conduction 
equation in the ice and the potential flow equation exterior 

to the ice. 

It will be noted that for this problem the ice surface 
is assumed to be a parabola with its vertex displaced 
a distance a, in front of the leading edge of the plate. 
This distance a, will be calculated and used in the 
solution. 

First the heat-conduction problem in the ice will 
be solved. Applying the complex transformation 

where 
2 = -ai2 

z = x+iy and i = Lj+ig 
(6) 

transforms the parabolic ice layer into a plane slab. 
The original and transformed coordinates are related 

by 

x = -@-$) (7) 
and y = - 2a<v]. 
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On the cooling plate, c = 0, U = 0 where 
# = (T- 7’,,)/ (r,- TW). On the ice-water interface, 
< = 1, 0 = 1. Also on < = 1 which defines 6, = y> 
equation (7) gives SF = 4a (a +x). 

It will generally be more convenient to use an x’ 
coordinate x’ = a +x, defined from the leading edge 
of the ice so that 

(5; = 4u.x’. (8) 

In the transformed coordinates the solution for the 
temperature field, V20 = 0, is just 

0 = <. (9) 

Transformed back to x,~ coordinates this gives 

For this problem the heat flux at the ice-water 
interface is of more interest than the temperature 
field itself. 

The complex heat flux is 

q=q*+iq,= -Li(.‘i-‘-,;~. 
I 

Its magnitude, /q/ = (q,j)“*, at the surface 5 = 1 is 

Using equation (7) and (8) to express this in terms of 
& and x’ gives the desired result 

q, = _,i!wJ I 

di (1 + &/2X’)2)“Z 
(11) 

As would be expected when 6Jx’ << 1 equation (11) 
approaches the one-dimensional result. 

To solve for the heat-transfer coefficient exterior to 
the ice layer the potential flow over the ice surface 

must first be obtained. In the transformed coor- 
dinates used above the flow of a uniform stream over 
the parabolic ice surface becomes a stagnation flow 
impinging normally on a flat surface. The complex 
potential for such a flow is given by 

k’(i) = 4 + i$ = li, 0a([2 - 26) 

= U,,,a[[<2-q2-2~]+i2(<- I)ql_ (12) 

where li’,, is the uniform stream velocity far from 

the ice surface [24]. From equation (12) it can be 
seen that < = 1 is a streamline with IJ = 0. The 

required result is the magnitude of the velocity U,, 
along this streamline. The complex velocity, 
I’ = dKl/dz, is 

The magnitude of the velocity. [VI = (1/p)“*, on 

t = 1 is then 

u, = u,, -L. 
(1 +ffy 

For a boundary layer growing with varying free 

stream velocity an approximate means of calculating 
the heat-transfer coefficient has been developed using 
the wedge solutions. This procedure is described in, 
for example, Kays [25]. The result is that the 
Stanton number, St, is given by 

For Pr = 10 values of the constants are given as 
C, = 0.073, C2 = 0.685, and C3 = 2.31. The velocity 
in equation (13) can be substituted into equation 
(14) and the integration carried out to give the heat- 
transfer coefficient as a function of position along the 
ice surface. In carrying out the integration it will be 
more convenient to convert the integral into an 
integral over q rather than s. For this purpose 

ds/dy = 2a(l +P$)~‘~ may be used. The result is that 

O.O73vi’2pCp u”” 
h(s) = --- 

(2a)“2(1 +$)O.*~Yj 

q’,685 

iI 

” fY2.37 W 
0.5’ (15) 

0 --i (1 + fF’2)0.685 

The heat-transfer coefficient can be expressed as a function of 6, andx’ noting that a = 6f/{4x’) and n = 2x’~‘i5,. 
A heat balance at the ice surface can now be used to relate q, and h(s) 

-qSds = h(s)(T, - T,)ds. (16) 

Inserting equation (11) and (15) in equation (16) and rearranging the result gives 

x’ _=~~(~~.5(l+.~~j) 
di 

where 

(17) 
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Near the leading edge of the plate where x’/fii c 1 

(5) .= (‘:i)“’ -1 (19) 

= 0.2981 

Equation (17) t-hen predicts that the ice has a 
parabolic shape given by 

s’ 
~ = 0.948 2 Re~;S/B,. 
si L 

From this expression the distance a, that the ice 
forms in front of the plate can be obtained 

6f 
a = --. 

4x’ 
(21) 

Alternatively for x z x’, ,j’(x’/di) = 0 and equation 

(17) gives 

.x 
- = 0.730 F Re~.5/W,. 
6, I 

(22) 

Except for a slight difference in the constant 0.730 
this is the same as the one-dimensional result in 
equation (4). Referring back to equation (13) it can 
be seen that for large distances, ‘1, from the 
stagnation point the stagnation flows gives a con- 
stant free stream velocity U,, which is the same 
condition as that for parallel flow over a flat plate. 

If the result of equation (22) is defined as 
(x/SJ, _D equation (17) can be rewritten as 

where (x/~J_~ is the result including the two- 
dimensional effec’t. The function f(.~‘/6,) was ob- 
tained by numerically integrating equation (18). The 
result is shown in Fig. 3. Since f(x’/s,) is only a small 
correction factor in equation (23) it was found that 
its effect could satisfactorily be approximated b) 
substituting (x/~J_~ for x’/ai in the fu&tion. The 
difference between x and x’ will still enter into the 
first order term (x/.x’)~.~. Here the ratio x/x’ can also 

X’ 

F 

FIG. 3. The function, f(x’/~S~), in the two dimensional 
theory solved for by numerical integration. 

1 08 

FIG. 4. A comparison of the ice thicknesses predicted by 
the two-dimensional and one-dimensional theories. 

be related to (x/Si)ll _D by using equation (21). With 
these substitutions equation (23) becomes 

The result (x/fii)lz _ D is then given as an explicit 

function of (x/6J, _D or alternatively using equation 
(4) or (22) it can be seen that (x/~~)I~-~ is an explicit 
function of Re,/H~. The ratio S,~,_,/6,~, -D derived 
from equation (24) is plotted as a function of Rex/H: 
in Fig. 4. For values of Rex/e: less than about nine 
the two-dimensional theory predicts a larger ice 
thickness than the one-dimensional result. This 
occurs because the two-dimensional theory accounts 
for the fact that the ice grows in front of the leading 
edge of the pltite so that the ice thickness does not go 
to zero at x = 0 as the one-dimensional theory 

would predict. For Rex/Q: greater than nine the two- 
dimensional theory predicts an ice layer a few 
percent thinner than the one-dimensional theory. 

This thinning of the ice layer is due to the combined 
effects of streamwise heat conduction in the ice layer 
and the acceleration of the free stream velocity over 
the ice surface. These predictions will be compared 
with experimental results in the next section. 

As mentioned in the Introduction several previous 
attempts have been made to approximate the effects 
of sjreamwise heat conduction and free stream 
acceleration. Saito et al. [20] used a heat-transfer 
correlation for a blunt body of arbitrary shape and a 
distributed source model for approximating the flow 
and heat transfer to the ice surface on a plate. In this 
analysis the possibility that the ice could form in 
front of the leading edge of the plate was neglected. 
Introducing this approximation, x = x’, into equa- 
tion (20) gives a result within 1% of the result in [20] 
for the shape of the ice surface near the leading edge 
of the ice sheet. The heat-transfer correlation used in 
[20] does not approach the flat plate correlation for 
large values of x so that the resulting expression may 
be expected to apply only near the leading edge. 

The results of the other attempt to analyze the 
eftect of a thick ice sheet [21], appeared to have 
some basic inconsistencies in it; however, that result 
could not be put in a form which could be checked 
against the present results. 
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RESULTS 

Measured ice profile thicknesses for several dif- 
ferent temperature and velocity conditions are shown 
in Fig. 5. The ice thicknesses shown, up to lOcm, 
were typical of those within the accessible range of 
experimental parameters. The figure also shows that 
for the thicker ice layers the ice does in fact extend in 
front of the leading edge of the plate as was predicted 
by the two-dimensional theory. In this figure the two 
independent effects of velocity and temperature are 
shown. The theory of the previous section suggests, 

lJ,cmls T,“C 8, 

a 013.0~154 1.3 9.5 
. 5.5 z 6.7 3.5 3.0 
A 5.5 z 6.7 5.0 1.6 

LJgI5yg 
2P t 
0 5 IO 15 20 25 

x (cm) 

FE. 5. Measured ice layer profiles for several conditions of 
free stream velocity and temperature ratio. 

0 
0 1 2 3 

however, that these effects can be combined in the 
single parameter Rex/Of. This will be done later but 
first the velocity and temperature profiles over the 
ice will be examined. 

Y,(2)” 
FIG. 7. Measured temperature profiles near the ice surface 

with LJ nO = 12.6cm/s, T, = 1.32’C and 0, = 8.86. 
Figures 6 and 7 show respectively the dimension- 

less velocity and temperature profiles above the ice 
surface for various values of Rex/O:. It should also be 
noted that for both of these profiles the scanning 
apparatus was restricted to operation in the vertical 
plane and thus the distance y’, in the figures is a 
vertical distance from the ice surface and not a 
distance normal to the ice as might have been 
preferred. In the figures this distance has been 
normalized by the characteristic laminar boundary- 
layer thickness, (YX/U,,,)‘.~, so that for a boundary 
layer developing on a flat plate all the profiles should 
fall on a single curve marked “laminar theory for flat 
plate”. Comparison of the measured profiles with the 
flat plate profiles; therefore, shows the effects of the 
ice surface. 

This again is a result of the flow acceleration. The 
profile at Re,/H~ = 92.8 suggests that the velocity at 
this maximum is actually slightly larger than the free 
stream value far from the ice. This may in fact be an 
experimental artifact. For very large values of Rex/Of 

the profile does, however, approach that for a flat 
plate. 

The anticipated effect of the free stream accele- 
ration on the temperature profile is to increase the 
temperature gradient at the ice surface. Such an 
increase is observed in Fig. 7; however, it must be 
remembered that to obtain the actual temperature 
gradient normal to the ice surface a correction must 
first be made for the local slope of the ice profile. 

In Fig. 6 it should be noted that the viscous In Fig. 8 the measured ice profiles are compared 
boundary layer is confined to values of the dimen- with the one- and two-dimensional theories of the 
sionless y distances of about 5 or less. Outside this previous section. In this figure the results have been 
region the velocity changes observed are due to plotted in the correlation coordinates suggested by 
potential flow effects. The value of U, which is the theory, that is, x/6, vs Rex/&!. The measurements 
appropriate to use in the boundary-layer calculation show the same general behavior as the two- 

is the value just outside the rapid drop in velocity at dimensional theory predicts. That is, for small Rex/Of 

the ice surface. The profiles taken near the leading the value of x/ai is less than the one-dimensional 
edge, ReJflz = 4.64 and 18.5 show that this value of prediction. For intermediate values of Re,..O? the 

U, is increasing rapidly with Re,/O~ as the velocity results are above the one-dimensional prediction and 
accelerates from the stagnation point on the ice. For for larger values of Rex/Of the measurements again 
Re,/flf = 46.4 and 92.8 the velocity profiles exhibit a approach the one-dimensional values. Throughout 

maximum just outside the viscous boundary layer. most of the experimental range the measured values 

1.5 ue./tbz 

. 4.64 

. 46.4 
0 92.6 

1.0 

01 ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ 0 20 40 60 80 100 120 

y(!y” 
FIG. 6. Measured velocity profiles near the ice surface with 

U ZO = 12.6cm/s, T,, = 1.32”C and H, = 8.86. 

10 

Rex&’ 

D 16.5 
. 46.4 
0 92.7 
A 636 

e 0.5 

Laminar Theory for Flat Plate 
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LReflected Beam on the Ice Surface / 

Original Laser Beam 1 

Frc;. 9. Photograph showing longitudinal grooves in the ice surface caused by longitudinal vortices with 
u m 0 = 4.0cm/s, T, = 4‘C and 0, = 0.6 at Y = 100cm. 

prediction although there was a lo-20% discrepancy 
near the plate leading edge. The overall conclusion of 

the measurements and the calculation is, however, 
the same. That conclusion is that the one- 
dimensional approximation will probably be suf- 

ficiently accurate for most practical purposes. One 
significant prediction of the two-dimensional analysis 
which is not given by the one-dimensional approxi- 
mation is that the steady state ice layer actually 
extends upstream of the leading edge of the cooling 
plate. This prediction was confirmed in the experi- 
mental observations. 

One other interesting phenomenon that was 
observed in the experiments was a thermal instability 
of the boundary layer. For small velocities and at 
large distances along the plate this thermal in- 
stability was observed to produce longitudinal 
grooves in the ice surface. This phenomenon may be 
of interest in explaining some surface features of 
glaciers where surface run-off is present. It should be 
noted, however, that it will occur only for low 
velocity flows and only in the case where the flow is 
over an ice surface. 
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PROFIL PERMANENT DE LA COUCHE DE GLACE SUR UNE PLAQUE A TEMPERATURE 
CONSTANTE, EN CONVECTION FORCEE: Iere Pa~ie-REGIME LAMINAIRE 

Rhsumk-On etudie la forme de la couche de glace qui apparait en regime permanent sur une plaque 
horizontale a temperature constante, dam un ecoulement parallele force. Dans cette premiere partie, on 
examine les phinomtnes qui affectent la forme pour le regime laminaire. Les effets de courbure de la 
surface de la glace et de la conduction thermique longitudinale dans la coucbe de glace sont 
particuiiercment interessants. Un modele bidimensionnel developpe pour tenir compte d’eux, suggire 
~‘utilisation d’un nombre de Reynolds mod&e Re,/Bf oit 8, est un parametre de temperature. On trouve 
que les mesures peuvent etre unitiees par ce parametre, pour un large domaine de temperature de plaque, 
de temperature d’ecoulement libre et de vitesse d’ecoulement. Dans le regime laminaire, des instabilit& 
thermiques de la couche limite sont observees, lesquelles produisent des rainures longitudinales sur la 

surface de la glace. 

DAS PROFIL DER STATIONAREN EISSCHICHT AUF EINER PLATTE KONSTANTER 
TEMPERATUR BEI ERZWUNGENER STRC)MUNG-I. BEREICH DER LAMINAREN 

STROMUNG 

ZusammenfassungpDie Form einer stationaren Eisschicht, die sich auf einer horizontalen Platte 
konstanter Temperatur bei paralleler erzwungener Striimung bildet, wurde analysiert. Diese Arbeit, Teil I 
einer zweiteiligen Folge, wird die Phanomene, welche die Form der Eisschicht im Bereich der laminaren 
Strijmung beeinflussen, untersuchen. Von besonderem Interesse sind die Einfiiisse der Kriimmung der 
Eisoberfllche auf die freie Stromung und die der Warmeleitung der Eisschicht in Striimungsrichtung. 
Eine zweidimensionale Theorie. in der diese Einfliisse berucksichtigt werden, legt es nahe, eine 
modifizierte Reynolds-Zahl der Form Rex/t), zur Darstellung der Eisprofile zu verwenden, wobei 8, ein 
Temperaturverhaltnisparameter ist. Es wurde gefunden, da8 bei Verwendung dieses Parameters die 
Messungen in einem weiten Bereich von Plattentemperaturen sowie Temperaturen und Geschwindig- 
keiten der freien Str~mung gut korrefiert werden konnten. Auch im laminaren Bereich wurden the~is~he 

fnstabilitaten der Grenzschicht beobachtet, die Langsriflen in der Eisoberflache hervorriefen. 

CTA~~OHAPHbI~ IIPO@M;lb CflOc( ,Tb,!jA HA 06TEKAEMO~ ILBACTMHE 
~~TO~HHO~ TEM~EPATYPbl. YACTb I. nAM~HAPHb1~ PEXMM 

Atmorauw -.- AHa.nmpyeTCn KOH@irypaUMB CTaUHOHapHOrO CIlOIl _,bAa, 06pa3ykoIUerOCn Ha ropM- 

30HT&lbHOii UAaCTkfHe. HaXO,VluleikS4 I3 FlapajlJleJlbHOM IlOTOKe. B AaHHOi CTaTbe. ~~~CTdBmUOLU&i 

CO6Oti ,WpByW WCTb pa6OTb1, L,CCfleAyEoTCR IIBneHHII. OKii3blBalOLUNe BJIHSIHHC Ha KOH@,I-ypaUHH) CA08 

flb;la IlpM .laM&WlapHOM pE+WMe Te’leHWH. OCO6Oe BHHMaHNe oEipaU,eHO Ha BAHRHHe KpNBMPHb, 

IlOBepXHOCTl4 JlbAa tla CBOljOAHbIii UOTOK M TeIlJlOnpOBOAHOCTb CJIOR AbAa B HZiIlpdBneHtiK TeSeHli,-!. 

&Ax yYiiTa -mix %&@eKTOB pa3pa6OTaHa AByMepHan Moaem B KOTOpoii Ann o6o~~e~i~~ npo@wieti 

C.‘IOR ,7bAa ucno,nb3yeTcr ~O~~~~U~pOB~HH~ YHC.flO PeriHoabAca wiAa Rr,/wf. r.Te 0, -- napakferp 

OTHOUIeHltR TeMffepaTyp. !iaiiAeHo. 970 C UOMOIlIb,O AaHHOFO RipaMeTpa pe3yAbTaTbl H3MepeHa~ 

MOWlo 0606LWTb +UX IllklpOKO~O AHaUa30Ha TeMFlepiiTyp ~JlaCThiHbL TeMWpaTyp LI CKOpOCTefi 

CBO6OAHorO UOTOKa. CnenyeT OTMeTHTb, YTO r,pu :laMuHapHoM pexHMe Tevetliin Hari>l,oAii.N,Cb 

TepwWCKHe HeYCTOhiBOCTM nOrpaHMWOr0 CAOll. KOTOpble nprtBOnki:lH K 06pa30BW,K, IlpOAOflbHblX 

KatlZiBOK Ha llOEepXHOCTM !Ib;la. 


